As a first step, we linearize Eqs. (9)-(12), to study
small-amplitude harmonic waves of frequency and wavenumber
. The
linear dispersion relation for electron-acoustic waves then reads:
We note the appearance of a normalized -dependent screening factor
(scaled Debye wavenumber)
in the denominator, defined by
From Eq. (14), we see that the frequency , and hence also
the phase speed, increases with
higher temperature ratio
. However, this is usually a
small correction to the dominant first term on the righthand side of
(15). For large wavelength values (small
), the
phase speed is given by
![]() |
(17) |
However, we should recall from kinetic
theory[1,2,3,5] that both for very long
wavelengths (
) and very short wavelengths
(
), the wave is strongly damped, and thus these limits
may be of academic interest only. The mode is weakly damped only for
intermediate wavelength values, where its acoustic nature is not
manifest. [1,2,3,5,29] Here,
is the cool
electron Debye length.
![]() |
Restoring dimensions for a moment, the dispersion relation becomes
It appears appropriate to compare the above results with earlier results, in the linear regime. First of all, we note that Ref. [5] has adopted a kinetic description of electron-acoustic waves in suprathermal plasmas. For this purpose, Eq. (18) may be cast in the form,
In Figure 1, we depict the dispersion curve of the electron-acoustic
mode, showing the effect of varying the values of the spectral index
and the density ratio
. It is confirmed numerically that the phase
speed (
) increases weakly with a reduction in suprathermal particle
excess, as the Maxwellian is approached, and that there is a significant
reduction in phase speed as the plasma model changes from one in which the
cool electrons dominate, to one which is dominated by the hot electron density.
Ashkbiz Danehkar