2.1 Physical and chemical conditions

Electron temperature $ T_{\rm e}$ and electron density $ N_{\rm e}$ for the different regions of M2-42 are presented in Table 2. The electron temperatures and densities were obtained using the EQUIB code (Howarth & Adams, 1981) from the [NII] nebular to auroral line ratio and the [SII] doublet line ratio, respectively. The electron temperature $ {\it T}_{\rm e}$([NII]) $ _{\rm corr}$ was corrected for recombination contribution to the auroral line using the formula given by Liu et al. (2000) and the ionic abundance $ {\rm N^{++}}/{\rm H^{+}}$ derived from the NII lines. The values of $ N_{\rm e}($[SII]$ )=3150$cm$ ^{-3}$ and $ T_{\rm e}($[NII] $ )_{\rm corr}=9600$K are in agreement with $ N_{\rm e}($[SII]$ )= 3240$cm$ ^{-3}$ and $ T_{\rm e}($[NII]$ )=9350$K derived by Wang & Liu (2007). Additionally, we determined the physical conditions of the NE and SW jets. The jets show a mean electron temperature of $ 8840 \pm 180$K, which is 760K lower than that of the main shell, whereas their mean electron density of $ 595 \pm 125$cm$ ^{-3}$ is by a factor of five lower than that of the main shell.

Table 2 also lists the ionic abundances X$ {}^{i+}$/H$ {}^{+}$ derived from collisionally excited lines (CELs) and optical recombination lines (ORLs). We used the EQUIB code to calculate the ionic abundances. We adopted the physical conditions, $ T_{\rm e}$ ( $ {\it T}_{\rm e}$ $ _{\rm corr}$ for the main shell) and $ N_{\rm e}$, derived from CELs. The atomic data sets used for plasma diagnostics and abundances analysis are the same as those used by Danehkar (2014, Chapter 3).

Our value of He$ ^{+}$/H $ ^{+}=0.105$ for the main shell is in good agreement with He$ ^{+}$/H$ ^{+}$ = 0.107 derived by Wang & Liu (2007). However, they derived O$ ^{++}$/H$ ^{+}$ =  $ 5.27 \times 10^{-4}$, which is twice our value. This could be due to the different atomic data used by them. Our values of N$ ^{+}$/H$ ^{+}$, S$ ^{+}$/H$ ^{+}$ and Ar$ ^{3+}$/H$ ^{+}$ are in reasonable agreement with N$ ^{+}$/H$ ^{+}$ =  $ 1.03 \times 10^{-4}$, S$ ^{+}$/H$ ^{+}$ =  $ 4.96\times 10^{-7}$ and Ar$ ^{3+}$/H$ ^{+}$ =  $ 1.59 \times 10^{-7}$ obtained by Wang & Liu (2007). Note that a slit with a width of $ 2\hbox{$^{\prime\prime}$}$ used by Wang & Liu (2007) is not completely related to the main shell. We see that the abundance discrepancy factor for O$ ^{++}$, $ {\rm ADF}({\rm O}^{++}) \equiv ({\rm O}^{++}/{\rm H}^{+})_{\rm ORL} / ({\rm O}^{++}/{\rm H}^{+})_{\rm CEL}= 3.14$, is in agreement with $ {\rm ADF}({\rm O}^{++})=2.09$ (Wang & Liu, 2007). Moreover, our abundance ratio of (N$ ^{++}$/O $ ^{++})_{\rm ORL}=0.388$ derived from ORLs is in excellent agreement with (N$ ^{++}$/O $ ^{++})_{\rm ORL}=0.399$ obtained by Wang & Liu (2007). Although He$ ^{+}$/H$ ^{+}$ and O$ ^{++}$/H$ ^{+}$ derived from the jets are similar to those of the main shell, N$ ^{+}$/H$ ^{+}$ and S$ ^{+}$/H$ ^{+}$ derived from the jets are about three times higher than those of the main shell. These ionization features of the bipolar collimated jets are typical of fast, low-ionization emission regions (FLIERs; Balick et al., 1993; Balick et al., 1994; Balick et al., 1998).


Table 2: Electron temperature $ {\it T}_{\rm e}$, electron density $ {\it N}_{\rm e}$ and ionic abundances derived from the dereddened fluxes listed in Table 1.

Parameter
Main Shell NE Jet SW Jet

$ {\it T}_{\rm e}$([NII])(K)
10270 9020 8660

$ {\it T}_{\rm e}$([NII]) $ _{\rm corr}$(K)
9600 - -

$ {\it N}_{\rm e}$([SII])(cm$ ^{-3}$)
3150 470 720

(He$ ^{+}$/H$ ^{+}$) $ _{\rm ORL}$
0.105 0.107 0.110

(N$ ^{+}$/H$ ^{+}$) $ _{\rm CEL} \times 10^{5}$
0.764 2.912 2.236

(O$ ^{++}$/H$ ^{+}$) $ _{\rm CEL} \times 10^{4}$
2.606 2.469 3.208

(S$ ^{+}$/H$ ^{+}$) $ _{\rm CEL} \times 10^{6}$
0.347 1.150 1.040

(S$ ^{++}$/H$ ^{+}$) $ _{\rm CEL} \times 10^{6}$
3.116 - -

(Ar$ ^{3+}$/H$ ^{+}$) $ _{\rm CEL} \times 10^{7}$
1.871 - -

(N$ ^{++}$/H$ ^{+}$) $ _{\rm ORL} \times 10^{4}$
3.175 - -

(O$ ^{++}$/H$ ^{+}$) $ _{\rm ORL} \times 10^{4}$
8.185 - -

Ashkbiz Danehkar
2018-03-28