To obtain nonlinear wave solutions, we consider all fluid variables in a stationary frame traveling at a constant normalized velocity (to be referred to as the Mach number), which implies the transformation . This replaces the space and time derivatives with and , respectively. Now equations (10) to (16) take the following form:
Reality of the cool electron density variable imposes the requirement that implies a lower boundary on the electrostatic potential value associated with negative polarity solitary structures. However, reality of the positron density variable imposes , implying a higher boundary on the electrostatic potential value associated with positive polarity solitary structures.
Substituting Eqs. (33)(34) into the Poisson's equation (16), multiplying the resulting equation by , integrating and taking into account the conditions at infinities ( ) yield a pseudoenergy balance equation:
For the existence of solitons, we require that the origin at is a root and a local maximum of in Eq. (36), i.e., , and at , where primes denote derivatives with respect to . It is easily seen that the first two constraints are satisfied. We thus impose the condition , and we get
An upper limit for is determined from the fact that the cool electron density becomes complex at negative potentials lower than for negative polarity waves, and the cool positron density at positive potentials higher than for positive polarity waves. Thus, the largest negative soliton amplitude satisfies , whereas the largest positive soliton amplitude fulfills . These yield the following equation for the upper limit in for negative polarity electrostatic soliton existence associated with cool electrons,
Figure 2 shows the range of allowed Mach numbers for negative polarity electrostatic solitary waves with different parameters: the positrontohot electron temperature ratio, , and the positrontocool electron density ratio, . The lower limit () and the upper limit () of Mach numbers are obtained from numerically solving equations (37) and (38), respectively. We see that there is a small difference between the model including the positrons and the model without the positrons ( ). As the positron is assumed to have a very small fraction of the total charge ( ) and a cool temperature ( ), they cannot have a significant role in the dynamics of electronacoustic waves in the model adopted here. Hence, the existence domain of electronacoustic (negative polarity electrostatic) solitary waves are not largely affected by the cool positrons.

The soliton existence regions for positive polarity electrostatic solitary waves are shown in Fig. 3 for different parameters. Solitary structures of the electrostatic potential may occur in the range , which depends on the parameters , , and . Moreover, we assume that the cool electrons and positrons are supersonic ( and , respectively), while the hot electrons are subsonic (). We used Eq. (37) to obtain the lower limit for negative polarity solitons. This equation may also have another solution, which could yield the lower Mach number limit for positive polarity solitary structures. However, we noticed that Mach numbers of positive polarity solitons cannot be constrained by Eq. (37) due to the small values of the density ratio . Therefore, the lower limit () is found to be at about . The positive potential solitons numerically derived from Eq. (36) cannot also produce any solutions for Mach numbers less than in the adopted parameter ranges of the positrons.

As seen in Fig. 3, the upper limit () of positive polarity solitons is slightly increased with an increase in the positrontohot electron temperature ratio and a decrease in the positrontocool electron density ratio . However, the effect is not significant, and also dissimilar to how the hottocool electron density ratio () affects electronacoustic waves [31]. This negligible effect is mostly attributed to the small fraction of positrons and their cool temperatures in the ep plasma system.
Figure 3 also depicts the upper limit () of allowed Mach numbers as a function of , for various values of and . As seen, increasing toward a Maxwellian distribution ( ) increases the upper limit () and broadens the Mach number range. It can be seen that positive polarity solitons are generated in narrower ranges of Mach numbers as hot electron suprathermality becomes stronger. This conclusion is similar to what found in electronacoustic solitary waves with suprathermal electrons [31].
Ashkbiz Danehkar